Llamafile
LiteLLM supports all models on Llamafile.
Property | Details |
---|---|
Description | llamafile lets you distribute and run LLMs with a single file. Docs |
Provider Route on LiteLLM | llamafile/ (for OpenAI compatible server) |
Provider Doc | llamafile ↗ |
Supported Endpoints | /chat/completions , /embeddings , /completions |
Quick Start
Usage - litellm.completion (calling OpenAI compatible endpoint)​
llamafile Provides an OpenAI compatible endpoint for chat completions - here's how to call it with LiteLLM
To use litellm to call llamafile add the following to your completion call
model="llamafile/<your-llamafile-model-name>"
api_base = "your-hosted-llamafile"
import litellm
response = litellm.completion(
model="llamafile/mistralai/mistral-7b-instruct-v0.2", # pass the llamafile model name for completeness
messages=messages,
api_base="http://localhost:8080/v1",
temperature=0.2,
max_tokens=80)
print(response)
Usage - LiteLLM Proxy Server (calling OpenAI compatible endpoint)​
Here's how to call an OpenAI-Compatible Endpoint with the LiteLLM Proxy Server
Modify the config.yaml
model_list:
- model_name: my-model
litellm_params:
model: llamafile/mistralai/mistral-7b-instruct-v0.2 # add llamafile/ prefix to route as OpenAI provider
api_base: http://localhost:8080/v1 # add api base for OpenAI compatible providerStart the proxy
$ litellm --config /path/to/config.yaml
Send Request to LiteLLM Proxy Server
- OpenAI Python v1.0.0+
- curl
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="my-model",
messages = [
{
"role": "user",
"content": "what llm are you"
}
],
)
print(response)curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "my-model",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Embeddings​
- SDK
- PROXY
from litellm import embedding
import os
os.environ["LLAMAFILE_API_BASE"] = "http://localhost:8080/v1"
embedding = embedding(model="llamafile/sentence-transformers/all-MiniLM-L6-v2", input=["Hello world"])
print(embedding)
- Setup config.yaml
model_list:
- model_name: my-model
litellm_params:
model: llamafile/sentence-transformers/all-MiniLM-L6-v2 # add llamafile/ prefix to route as OpenAI provider
api_base: http://localhost:8080/v1 # add api base for OpenAI compatible provider
- Start the proxy
$ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
- Test it!
curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{"input": ["hello world"], "model": "my-model"}'